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Abstract The brain emotional learning model can be

implemented with a simple hardware and processor; how-

ever, the learning model cannot model the qualitative

aspects of human knowledge. To solve this problem, a

fuzzy-based emotional learning model (FELM) with

structure and parameter learning is proposed. The mem-

bership functions and fuzzy rules can be learned through

the derived learning scheme. Further, an emotional fuzzy

sliding-mode control (EFSMC) system, which does not

need the plant model, is proposed for unknown nonlinear

systems. The EFSMC system is applied to an inverted

pendulum and a chaotic synchronization. The simulation

results with the use of EFSMC system demonstrate the

feasibility of FELM learning procedure. The main contri-

butions of this paper are (1) the FELM varies its structure

dynamically with a simple computation; (2) the parameter

learning imitates the role of emotions in mammalians

brain; (3) by combining the advantage of nonsingular ter-

minal sliding-mode control, the EFSMC system provides

very high precision and finite-time control performance;

(4) the system analysis is given in the sense of the gradient

descent method.

Keywords Brain emotional learning model � Fuzzy
control � Structure learning � Parameter learning �
System sensitivity term

1 Introduction

It is known that sliding-mode control provides robust

control for nonlinear systems even in the presence of sys-

tem uncertainties and external disturbances. On the other

hand, fuzzy control inherits many attractive features

including easy incorporation of expert knowledge into the

control law. During the last two decades, there are many

studies on the combination of sliding-mode control and

fuzzy control to design a fuzzy sliding-mode control

(FSMC) system [1–3]. It is easily implemented while only

one variable (sliding surface) is defined as the input vari-

able of fuzzy rules. However, there are two disadvantages

in the FSMC design. One is the convergence speed of

tracking error and the other is the requirement of expert

knowledge.

The most commonly used sliding surface is the linear

sliding surface, which can guarantee the system stability

and desired control performance of the closed-loop control

systems [1]. However, the system states cannot reach the

equilibrium point in a finite time [4]. To overcome this

drawback, a nonsingular terminal sliding-mode control

(NTSMC) [4–6] system with nonsingular sliding surface

has been successfully proposed for nonlinear systems.

Although the NTSMC system can reach zero steady-state

tracking error in a limited time, it cannot be implemented

as the plant model is unknown or perturbed. For this rea-

son, the NTSMC system cannot be applied in real

applications.

On the other hand, the adaptive fuzzy sliding-mode

control (AFSMC) systems have been widely adopted to

treat the problem of nonlinear systems with unknown

system dynamics [7–10]. The stability of the AFSMC

systems can be analyzed using Lyapunov stability theory.

In general, there are two types of AFSMC systems, namely
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direct and indirect. For direct scheme, only one fuzzy

approximator is used to approximate the ideal controller.

But two fuzzy approximators are required for the indirect

scheme. Although the AFSMC systems are robust and

capable of online learning, they cannot provide very high

precision performance and finite-time control.

In addition, the number of fuzzy rules used in the

AFSMC systems is fixed. When the chosen rule number is

too large, the learning performance has little improvement

by further increasing the rule number. To determine the

optimal rule number, several dynamic structure learning

methods that can vary its fuzzy rules dynamically have

been studied [11–14]. It focuses on generating an optimal

rules number and investigates the self-organizing method

of adding and pruning fuzzy rules in addition to parameter

update.

The AFSMC systems usually require a long-time

training sequence. To solve this problem, Moren and

Balkenius [15] proposed a brain emotional learning

model (BELM), which is a structural model based on the

limbic system of mammalian brains. Recently, many

studies for the design of BELM-based intelligent control

(BIC) systems have been reported [16–20]. Specifically,

Sharbafi et al. [16] proposed the motion control of an

omnidirectional robot by the BIC system. Roshanaei

et al. [17] used the BELM to optimize the beamforming

and the direction of arrival estimation. In [18, 19], the

BIC system was used for motor speed control to achieve

favorable control performance even under motor param-

eter changes and operating point changes. Khalghani and

Khooban [20] proposed the BIC system for controlling

the DVR compensator. All these results indicate that the

BIC systems do not require any training sequence

because its learning algorithm is only to imitate the role

of emotions in mammalians brain. Nevertheless, the BIC

systems cannot handle the qualitative aspects of human

knowledge and reasoning processes due to the sensory

input and emotional signal of the BELM which are

chosen as a function of tracking error.

To attack the mentioned drawbacks, this paper develops

a fuzzy-based emotional learning model (FELM) that

comprised a fuzzy amygdale system (FAS) and a fuzzy

orbitofrontal system (FOS). The FELM can model the

qualitative aspects of human knowledge based on the

emotional learning of human brain. Further, this paper

proposes an emotional fuzzy sliding-mode control

(EFSMC) system to cope with a class of unknown non-

linear systems. The EFSMC system can either increase or

decrease the number of fuzzy rules over time based on

tracking performance and a full-tuned parameter learning

law is developed to upgrade the learning capability.

Finally, the proposed EFSMC system is applied to an

inverted pendulum and a chaotic synchronization. The

simulation results show that not only the EFSMC system

can achieve robust characteristics but also the structure

learning ability enables the FELM to evolve its structure

online.

2 Design of the Ideal NTSMC System

Consider a second-order nonlinear system as

x ¼ f ðx; _xÞ þ gðx; _xÞu; ð1Þ

where x is the system state, f ðx; _xÞ and gðx; _xÞ[ 0 are the

system dynamics, and u is the control input. The control

objective is to find an appropriate controller so that the

system state x can track a system command xc closely.

Define a tracking error

e ¼ xc � x ð2Þ

From (2), the error dynamic equation can be rewritten as

[21]

e ¼ zðx; _xÞ � u; ð3Þ

where zðx; _xÞ ¼ xc � 1� 1
gðx; _xÞ

� �
x� f ðx; _xÞ

gðx; _xÞ. Then a nonsin-

gular sliding surface is defined as [4–6]

s ¼ eþ 1

k
_e
p
q; ð4Þ

where k is a positive constant, and p and q are both positive

odd integers which satisfy the condition q\p\2q. If the

nonlinear term zðx; _xÞ is known, there exits an ideal

NTSMC system as

u� ¼ zðx; _xÞ þ k
q

p
_e2�

p
q þ ksgnðsÞ; ð5Þ

where k is a positive constant and sgnð�Þ is a sign function.

Differentiating (4) with respect to time and using the

control law u ¼ u�, we can obtain that

_s ¼ _eþ 1

k
p

q
_e
p
q
�1€e

¼ _eþ 1

k
p

q
_e
p
q
�1ðzðx; _xÞ � uÞ

¼ _eþ 1

k
p

q
_e
p
q
�1 �k

q

p
_e2�

p
q � ksgnðsÞ

� �

¼ � k

k
p

q
_e
p
q
�1sgnðsÞ

ð6Þ

Consider the candidate Lyapunov function as

V1 ¼
1

2
s2 ð7Þ

Differentiating (7) with respect to time and using (6)

yield
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_V1 ¼ s _s ¼ � k

k
p

q
_e
p
q
�1 sj j � 0: ð8Þ

Since p and q are both positive odd integers and

1\ p
q
\2, then _e

p
q
�1 [ 0 for _e 6¼ 0 [4–6]. When the non-

singular sliding surface s ¼ 0 is reached, the system

dynamic can be determined by the following nonlinear

differential equation

_e ¼ �ke
q
p: ð9Þ

It can be found that both of tracking error e and its

derivative _e will converge to zero in a limited time [4]. The

system stability of the ideal NTSMC system in (5) is

proven by Lyapunov theory; however, the ideal NTSMC

system cannot be implemented due to the nonlinear term

zðx; _xÞ is unknown in real applications.

3 Design of the EFSMC System

It is highly desirable to propose a model-free controller

without knowing the system dynamics. Based on the bio-

inspired BELM [16–20], the control output of the EFSMC

system as shown in Fig. 1 is designed as

uec ¼ ufa � ufo; ð10Þ

where ufa is the output of FAS and ufo is the output of FOS.

The FAS is used for providing attention signals of the

FELM and the FOS is designed to inhibit inappropriate

responses from FAS. At the sampling time t, assuming that

there are nðtÞ fuzzy rules in FAS, each fuzzy rule is

described as follows:

Rule i : IF s is Fi; THEN ufa is Vi;
for i ¼ 1; 2; . . .; nðtÞ; ð11Þ

where, in the ith rule, Fi represents fuzzy sets of s and Vi is

the consequent part with initial value zero. Let fuzzy set Fi

be the Gaussian functions described as

/i ¼ exp � s� cið Þ2

rið Þ2

 !
; ð12Þ

where ri and ci are the deviation and mean, respectively, of

the Gaussian function in the ith term. Thus, the defuzzifi-

cation of the FAS is accomplished as

ufa ¼
XnðtÞ

i¼1

Vi/i; ð13Þ

where /i is the fuzzy firing weight of the ith fuzzy rule.

Similarly, each fuzzy rule in the FOS is described as

follows:

Rule i : IF s is Fi; THEN ufo is Wi;

for i ¼ 1; 2; . . .; nðtÞ ð14Þ

where Fi is the fuzzy set of s and Wi is the consequent part

with initial value zero. Thus, the FOS output is obtained as

ufo ¼
XnðtÞ

i¼1

Wi/i: ð15Þ

This process is based on the fact that the Orbitofrontal

Cortex receives the same signals as the Amygdala does

[15].

3.1 Online Structure Learning

There is no fuzzy rule in the FELM initially. To solve the

problem of rule number determination, a structure learning

algorithm for generation and removal of fuzzy rules is

developed. An initial fuzzy rule is generated with param-

eters given as [11–14]

V1 ¼ W1 ¼ 0; ð16Þ
r1 ¼ �r; ð17Þ
c1 ¼ s; ð18Þ

where �r is a parameter specified by designers. For each

subsequent piece of input data, the FAS and FOS will not

generate a new fuzzy rule but update parameters of the

existing fuzzy rules if the new input data falls within the

existing fuzzy sets. The fuzzy firing weight in (12) is used

as the degree measure and the maximum degree /max is

defined as

/max ¼ max
1� k� nðtÞ

/k: ð19Þ

Let /th 2 ð0; 1Þ be a given growing threshold. If

/max �/th is satisfied, a new fuzzy rule is generated. For

more complex learning problems, a large rule number is

fuzzy amygdale 
controller

fuzzy orbitofrontal
controller

structure and 
parameter learning

cx

emotional 
signal

nonsingular
sliding surface

e s fou

fau

ecu

iii cVn ,,,

es

iii cWn ,,,

emotional fuzzy sliding-mode control 

unknown
nonlinear 

system

x

Fig. 1 Block diagram of the EFSMC system
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required and a large threshold value should be set. How-

ever, a large threshold value will lead to an overtraining

problem. In this paper, a time-varying growing threshold is

proposed as

/th ¼ /f þ ð/s � /fÞ expð�s1tÞ; ð20Þ

where /s and /f are positive constants which satisfy the

condition /s [/f , and s1 is a constant that controls the

decay speed. We can see that the time-varying growing

threshold allows the threshold value to decay from /s to

/f . Thus, the FELM can easily generate a new fuzzy rule at

the initial learning phase and avoid the overtraining prob-

lem while the growing threshold decays during the learning

process. Once a new fuzzy rule is generated, the next step

is to assign the initial adjustable parameters as follows:

VnðtÞþ1 ¼ WnðtÞþ1 ¼ 0 ð21Þ

rnðtÞþ1 ¼ �r ð22Þ

cnðtÞþ1 ¼ s: ð23Þ

Start

No

end learning ?

End

Yes

is the first 
input?

Yes

No

generate the first 
fuzzy rule

th,max

?max th

Yes

generate a new 
fuzzy rule

No

iI

?thi II

Yes

i

remove the i-th
fuzzy rule

Noupdate the 
adjustable 
parameter

calculate tracking 
error and nonsingular 

sliding surface

calculate maximum 
degree and update 
growing threshold

calculate 
significance index of 

the i-th fuzzy rule

s

Fig. 2 The learning scheme

Fig. 3 Simulation results of using AFSMC system with delta

adaptation law

Fig. 4 Simulation results of using EFMSC system with smaller

signal gain
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In order to remove inappropriate fuzzy rules, a signifi-

cance index of the ith fuzzy rule given in [22] is introduced

Iiðt þ 1Þ ¼
IiðtÞ expð�s2Þ; if /i �/r

IiðtÞ 2� exp �s3 1� IiðtÞð Þð Þ½ � ; if /i [/r

(

ð24Þ

where /r 2 ð0; 1Þ is a given threshold, and s2 and s3 are

constants that control the decay speed of significance

index. The initial value of significance index is set to 1 for

each fuzzy rule. If Ii � Ith is satisfied, where Ith is a pre-

given pruning threshold, then the ith fuzzy rule will be

removed. The flow chart of the learning scheme is shown in

Fig. 2. It shows that the fuzzy rules can be created and

adapted as online learning proceeds via simultaneous

structure and parameter learning.

3.2 On-line Parameter Learning

There has not been any defined mathematical method to

tune the BELM until now. The parameter learning that is

inspired by emotional learning in mammalians brain [16]

can be applied as

DViðtÞ ¼ gvmaxð0;/iðes� ufaÞÞ ð25Þ
DWiðtÞ ¼ gw/iðuec � esÞ; ð26Þ

where i ¼ 1; 2; . . .; nðtÞ, gv and gw are the learning rates for

Vi and Wi, respectively, and es is the emotional signal

which is a function of several parameters. In order to

represent the incapability of forgetting the previous emo-

tion signals, the FAS uses monotonic weight-adjusting

functions with a maximum term. Thus, the parameter

weights ViðtÞ cannot be decreased. When the fuzzy firing

weights /i ¼ 0, which mean there is no learning signal

input to the FAS, thus the parameter weights ViðtÞ are

certainly stable. In [16–20], the emotional signal is selected

as a complex function of other signals such as plant output,

model output, and tacking error. To explain the perception

ability of the EFSMC system from the environment, this

paper designs the emotional signal as

es ¼ k1sþ k2uec; ð27Þ

where k1 and k2 are the constant gains. Further, the

effectiveness of EFSMC system will be limited while only

the fuzzy rules Vi and Wi are online tuned. To upgrade the

learning capability of EFSMC system, define a cost func-

tion as

C ¼ 1

2
s2: ð28Þ

Based on the gradient descent method [23, 24], the

parameter adaptation law can be represented as

Fig. 6 Performance comparison of the inverted pendulum example

Fig. 5 Simulation results of using EFMSC system with larger signal

gain
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DWiðtÞ ¼ �gw
oC

oWi

¼ �gw
oC

ouec

ouec

oufo

oufo

oWi

¼ gw
oC

ouec
/i:

ð29Þ

Here oC
ouec

cannot be determined exactly due to the

uncertainties of the plant dynamics. To overcome this

problem, a delta adaptation law [25, 26] has been proposed.

However, its convergence property cannot be proven. In

this paper, the sensitivity term of plant model can be

obtained by comparing (26) with (29) to yield
oC

ouec
¼ uec � es: ð30Þ

In order to train the EFSMC system effectively, the full-

tuned parameter adaptive laws Dri and Dci for the ith fuzzy
rules can be obtained as

DriðtÞ ¼ �gr
oC

ouec

ouec

oufo

oufo

o/i

o/i

ori

¼ grðuec � esÞWi

2 s� cið Þ2

rið Þ3
/i

ð31Þ

DciðtÞ ¼ � oC

ouec

ouec

oufo

oufo

o/i

o/i

oci

¼ gcðuec � esÞWi

2 s� cið Þ
rið Þ2

/i;

ð32Þ

where gr and gc are positive learning rates. The controller

parameters of the EFSMC system are updated as follows:

Viðt þ 1Þ ¼ ViðtÞ þ DViðtÞ ð33Þ
Wiðt þ 1Þ ¼ WiðtÞ þ DWiðtÞ ð34Þ
riðt þ 1Þ ¼ riðtÞ þ DriðtÞ ð35Þ
ciðt þ 1Þ ¼ ciðtÞ þ DciðtÞ: ð36Þ

It is shown that the fuzzy sets and the fuzzy rules can be

tuned to increase the online learning ability of the EFSMC

system. Since the modification of each fuzzy rule in the

FELM is based on the fuzzy firing weights and the emo-

tional signal, the parameter learning algorithm is

reasonable.

3.3 Stability Analysis

Substituting u ¼ uec (10) into (3) yields

e ¼ zðx; _xÞ � ufa þ ufo: ð37Þ

Fig. 7 Simulation results of the FSMC system for scenario 1 Fig. 8 Simulation results of the FSMC system for scenario 2
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Differentiating (4) with respect to time and using (5) and

(37), we can obtain that

_s ¼ 1

k
p

q
_e
p
q
�1 �ksgnðsÞ þ u� � ufa þ ufoð Þ: ð38Þ

Multiplying both sides by s, gives

s _s ¼ 1

k
p

q
_e
p
q
�1 �k sj j þ sðu� � ufa þ ufoÞð Þ: ð39Þ

According to the gradient descent method, the weights

in the FOS are updated by the following equation [27, 28]

DWiðtÞ
¼ �g0s/i

; ð40Þ

where g is the learning rate and g0 ¼ g 1
k
p
q
_e
p
q
�1. Due to

_e
p
q
�1 [ 0 for all _e 6¼ 0 [4–6], g0 is taken as new learning

rate. On the other hand, while the gains in the emotional

signal are chosen k1 [ 0 and k2 ¼ 1, the emotional

parameter learning (26) can be rewritten as

DWiðtÞ ¼ �gwk1s/i ¼ �g00s/i; ð41Þ

where g00 ¼ gwk1 is taken as new learning rate. We can find

that the emotional parameter learning (41) is the same as

the parameter learning (40) using the gradient descent

method. Therefore, the stability of the proposed EFSMC

system can be guaranteed.

The design procedure of the EFSMC system is sum-

marized as follows:

Step 1: Define the tracking error e and the nonsingular

sliding surface s as (2) and (4), respectively.

Step 2: Determine the structure of the FELM according

to Fig. 2, where the parameters are tuned by (33)–(36).

Step 3: Calculate the control law as (10), where the

output of FOS is given as (13) and the output of FAS is

given as (15).

4 Simulation Results

4.1 Inverted Pendulum Example

Consider an inverted pendulum problem to demonstrate the

robustness of the EFSMC scheme. The dynamics of the

inverted pendulum system is given as [29]

Fig. 10 Simulation results of the BIC system for scenario 2

Fig. 9 Simulation results of the BIC system for scenario 1
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x ¼ f ðx; _xÞ þ gðx; _xÞuþ d; ð37Þ

where x is the angle of the pendulum, f ðx; _xÞ ¼
ml _x sinðxÞ cosðxÞ�ðMþmÞg0 sinðxÞ

ml cos2ðxÞ�4
3
lðMþmÞ and gðx; _xÞ ¼ � cosðxÞ

ml cos2ðxÞ�4
3
lðMþmÞ are

the system dynamics, u is the control input, M ¼ 1 is the

mass of cart, m ¼ 0:1 is the mass of rod, g0 ¼ 9:81 is the

gravity, l ¼ 0:5 is the length of rod, and d is the external

disturbance �5� d� 5. To investigate the effectiveness of

the EFSMC system, an AFSMC system with delta adap-

tation law [25, 26] is applied for comparison. A fuzzy

approximator was used to approximate the ideal controller

and the sensitivity term was determined as oC
ou

¼ _eþ e. The

simulation results of the AFSMC system with delta adap-

tation law are shown in Fig. 3. The response of x is shown

in Fig. 3a; the response of _x is shown in Fig. 3b; and the

control input is shown in Fig. 3c. The simulation results

show that the accurate tracking control performance can be

obtained after the parameter learning. However, the con-

vergence speed of tracking error is slow at the initial

learning phase and only parameter learning is considered.

There is a trade off between the approximation accuracy

and computational loading.

Then, the EFSMC system is applied again. The control

parameters of the EFSMC system are selected as k ¼ 0:5,

p ¼ 7, q ¼ 5, gv ¼ gw ¼ 0:4, gr ¼ gc ¼ 0:2, k1 ¼ k2 ¼ 1,

�r ¼ 0:4, /s ¼ 0:6, /f ¼ 0:2, /r ¼ 0:01, Ith ¼ 0:01, s1 ¼ 1,

and s2 ¼ s3 ¼ 0:01. Generally, these control parameters

require some trial-and-error tuning procedures to determine.

The simulation results of the EFSMC system with smaller

gain constants (k1 ¼ 1 and k2 ¼ 1) are shown in Fig. 4. The

response of x is shown in Fig. 4a; the response of _x is shown

Fig. 11 Simulation results of the EFSMC system for scenario 1
Fig. 12 Simulation results of the EFSMC system for scenario 2
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in Fig. 4b; the control input is shown in Fig. 4c; and the

number of fuzzy rules is shown in Fig. 4d. The simulation

results show that the favorable tracking responses can be

provided and the concise system size can also be observed

since the structure learning and the parameter learning are

applied simultaneously. Since the FELM does not process

the emotional signals and determine its significance well, the

tracking errors will exist after learning.

As the emotional signal influences the convergence

speed of tracking error, the set of larger gain constants

(k1 ¼ 10 and k2 ¼ 1) is applied to the EFSMC system.

The simulation results of the EFSMC system with larger

gain constants are shown in Fig. 5. The response of x is

shown in Fig. 5a; the response of _x is shown in Fig. 5b;

the control input is shown in Fig. 5c; and the number of

fuzzy rules is shown in Fig. 5d. Figure 5 shows that the

EFSMC system with larger gain constants is robust to

the external disturbance. Results show that more favor-

able tracking performance with faster convergence speed

of the tracking error can be obtained if the EFSMC

system with larger gain constants in emotional signal are

selected.

For further performance comparison, a performance

index I ¼ 1
2

P
e2 þ _e2 is considered. The performance

comparison between the AFSMC system and the EFSMC

system is shown in Fig. 6. It is observed that the perfor-

mance index of the EFSMC system with larger gain con-

stants is smaller than other methods. This is due to the fact

that the tracking errors converge the most quickly using

larger gain constants. The drawback is that it will require

large control signal at initial control phase.

4.2 Chaotic Synchronization Problem

Chaos synchronization can be applied in the vast areas of

engineering community such as physics, chemistry, biol-

ogy, ecology, and secure communication [30–32]. Con-

sider a master–slave coupled chaotic gyros system as

follows [30]:

x ¼ fx sinx t sin x� a2
ð1� cos xÞ2

sin3 x
þ b sin x� c1 _x� c2 _x

3

¼ gxðx; _xÞ
ð38Þ

y ¼ fy sinx t sin y� a2
ð1� cos yÞ2

sin3 y
þ b sin y

� c1 _y� c2 _y
3 þ u

¼ gyðx; _xÞ þ u

; ð39Þ

where a2 ¼ 100, b ¼ 1, c1 ¼ 0:5, c2 ¼ 0:05, x ¼ 2, gxðtÞ ,
and gyðtÞ are the dynamic of the master and slave gyros,

respectively, and u is the control input. The control objective

is that the two coupled chaotic gyros should be synchronized

by an appropriate control input u. Two test scenarios are

considered in this paper. The settings of scenario 1 (initial

variation case) are ðx; _x; y; _yÞ ¼ ð1; 1;�1;�1Þ, fx ¼ 32 and

fy ¼ 32, and those of scenario 2 (parameter variation case)

are ðx; _x; y; _yÞ ¼ ð1; 1; 1; 1Þ, fx ¼ 32 and fy ¼ 37. To evaluate

the performance of the proposed EFSMC system, the results

are compared with those obtained by the FSMC system [1]

and the BIC system [19].

First, the FSMC system [1] is applied to the chaos

synchronization. Assuming that there are five fuzzy rules in

the FSMC system, each fuzzy rule is described as follows:

Rule i : IF s is Fi; THEN ufc is ai;

for i ¼ 1; 2; . . .; 5
; ð40Þ

where ai is the singleton control actions and Fi are the

labels of the fuzzy sets which are fixed in this study. The

fuzzy rules can be constructed by the sense that s will

Fig. 13 Performance comparison of the chaos synchronization

example
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approach to zero. The simulation results of the FSMC

system are shown in Figs. 7 and 8 for scenario 1 and

scenario 2, respectively. The responses of states ðx; yÞ are
shown in Figs. 7a and 8a; the responses of states ð _x; _yÞ are
shown in Figs. 7b and 8b; and the control inputs are shown

in Figs. 7c and 8c. The simulation results show that the

satisfactory performance can be achieved for scenario 1 but

not for scenario 2. The fuzzy rules ai should be precon-

structed by trial-and-error tuning procedure; however, it is

difficult to tune a fuzzy rules base that can cope with wide

system uncertainties.

Then, the BIC system [19] is applied to the chaos syn-

chronization again. The sensory input of the BIC system is

chosen as es ¼ _eþ e and the controller parameter that is

initiated from zero can be online tuned in the sense of the

BELM. The simulation results of the BIC system are

shown in Figs. 9 and 10 for scenario 1 and scenario 2,

respectively. The responses of states ðx; yÞ are shown in

Figs. 9a and 10a; the responses of states ð _x; _yÞ are shown in

Figs. 9b and 10b; and the control inputs are shown in

Figs. 9c and 10c. All of the tracking errors for both of the

test scenarios would converge to zero after controller

parameter learning, and it means that the chaos synchro-

nization is stable using the BIC system. Although the

simulated results show the effectiveness of the bio-inspired

emotional learning approach, the convergence speed of

tracking error is slow. In addition, the BELM cannot model

the qualitative aspects of human knowledge.

Finally, the EFSMC system is applied to the chaos syn-

chronization again. The control parameters are selected as

k ¼ 0:5, p ¼ 7, q ¼ 5, gv ¼ gw ¼ 0:02, k1 ¼ k2 ¼ 1, �r ¼ 2,

/s ¼ 0:4, /f ¼ 0:2, /r ¼ 0:01, Ith ¼ 0:01, s1 ¼ 1, and

s2 ¼ s3 ¼ 0:01. All of the parameters are determined by trial

and error in order to guarantee the desired control performance.

The simulation results of the EFSMC system are shown in

Figs. 11 and 12 for scenario 1 and scenario 2, respectively. The

responses of states ðx; yÞ are shown in Figs. 11a and 12a; the

responses of states ð _x; _yÞ are shown in Figs. 11b and 12b; the

control inputs are shown in Figs. 11c and 12c; and the numbers

of fuzzy rules are shown in Figs. 11d and 12d. The simulation

results show that not only the FELMhas the admirable property

of small fuzzy rules size and high learning accuracy but also

more favorable tracking performance with faster convergence

speed of the tracking error.

For further performance comparison, a performance

index I ¼ 1
2

P
e2 þ _e2 is considered. The performance

indexes of the FSMC system, the BIC system, and the

EFSMC system are shown in Figs. 13a, b for scenario 1

and scenario 2, respectively. The performance index of the

FSMC system is smaller than other methods due to the

fuzzy rule constructed by time-consuming trial-and-error

tuning procedures. But, the favorable tracking performance

cannot be achieved as the fuzzy rules are not adaptive. It

implies that the FSMC system is not suitable for chaos

synchronization. Nevertheless, the proposed EFSMC sys-

tem can achieve better design performance than that using

BIC system for both the test scenarios.

5 Conclusions

A FELM with dynamic structure learning to handle the

emotional learning of human knowledge is presented. The

growing or pruning of fuzzy rules relies on the input data

(tracking error and nonsingular sliding surface). Further,

this paper has successfully demonstrated the design of an

EFSMC system based on emotional learning process of

the FELM to control an inverted pendulum and a chaotic

synchronization. A comparison among the BIC system,

the FSMC system and the proposed EFSMC systems is

made. The FSMC system cannot cope with wide system

uncertainties and the BIC system cannot model the

qualitative aspects of human knowledge. Nevertheless, the

proposed EFSMC system can achieve robust characteris-

tics but also the structure learning ability enables the

FELM to evolve its structure online. However, the

EFSMC system requires a priori knowledge about the

sign of control gain.

Further works on the EFSMC system include: (1) con-

sider autotuning of the learning rates gv, gw, gr , and gc in
the parameter learning law to increase the convergence of

the closed-loop system [33, 34]; (2) extend the FELM to

control a multi-input multi-output unknown nonlinear

system such as mobile manipulator robot [35].
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